

General Certificate of Education Advanced Subsidiary Examination
June 2013

Mathematics

MPC1

Unit Pure Core 1

Monday 13 May 20131.30 pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You must not use a calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- The use of calculators is not permitted.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1
The line $A B$ has equation $3 x-4 y+5=0$.
(a) The point with coordinates $(p, p+2)$ lies on the line $A B$. Find the value of the constant p.
(b) Find the gradient of $A B$.
(c) The point A has coordinates $(1,2)$. The point $C(-5, k)$ is such that $A C$ is perpendicular to $A B$. Find the value of k.
(d) The line $A B$ intersects the line with equation $2 x-5 y=6$ at the point D. Find the coordinates of D.
(3 marks)

2 (a) (i) Express $\sqrt{48}$ in the form $n \sqrt{3}$, where n is an integer.
(1 mark)
(ii) Solve the equation

$$
x \sqrt{12}=7 \sqrt{3}-\sqrt{48}
$$

giving your answer in its simplest form.
(b) Express $\frac{11 \sqrt{3}+2 \sqrt{5}}{2 \sqrt{3}+\sqrt{5}}$ in the form $m-\sqrt{15}$, where m is an integer. (4 marks)

3 A circle C has equation

$$
x^{2}+y^{2}-10 x+14 y+25=0
$$

(a) Write the equation of C in the form

$$
(x-a)^{2}+(y-b)^{2}=k
$$

where a, b and k are integers.
(b) Hence, for the circle C, write down:
(i) the coordinates of its centre;
(ii) its radius.
(c) (i) Sketch the circle C.
(ii) Write down the coordinates of the point on C that is furthest away from the x-axis.
(2 marks)
(d) Given that k has the same value as in part (a), describe geometrically the transformation which maps the circle with equation $(x+1)^{2}+y^{2}=k$ onto the circle C.

4 (a) The polynomial $\mathrm{f}(x)$ is given by $\mathrm{f}(x)=x^{3}-4 x+15$.
(i) Use the Factor Theorem to show that $x+3$ is a factor of $\mathrm{f}(x)$.
(ii) Express $\mathrm{f}(x)$ in the form $(x+3)\left(x^{2}+p x+q\right)$, where p and q are integers.
(b) A curve has equation $y=x^{4}-8 x^{2}+60 x+7$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Show that the x-coordinates of any stationary points of the curve satisfy the equation

$$
x^{3}-4 x+15=0
$$

(1 mark)
(iii) Use the results above to show that the only stationary point of the curve occurs when $x=-3$.
(iv) Find the value of $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ when $x=-3$.
(v) Hence determine, with a reason, whether the curve has a maximum point or a minimum point when $x=-3$.

5 (a) (i) Express $2 x^{2}+6 x+5$ in the form $2(x+p)^{2}+q$, where p and q are rational numbers.
(ii) Hence write down the minimum value of $2 x^{2}+6 x+5$.
(b) The point A has coordinates $(-3,5)$ and the point B has coordinates $(x, 3 x+9)$.
(i) Show that $A B^{2}=5\left(2 x^{2}+6 x+5\right)$.
(ii) Use your result from part (a)(ii) to find the minimum value of the length $A B$ as x varies, giving your answer in the form $\frac{1}{2} \sqrt{n}$, where n is an integer.

6 A curve has equation $y=x^{5}-2 x^{2}+9$. The point P with coordinates $(-1,6)$ lies on the curve.
(a) Find the equation of the tangent to the curve at the point P, giving your answer in the form $y=m x+c$.
(b) The point Q with coordinates $(2, k)$ lies on the curve.
(i) Find the value of k.
(ii) Verify that Q also lies on the tangent to the curve at the point P.
(c) The curve and the tangent to the curve at P are sketched below.

(i) Find $\int_{-1}^{2}\left(x^{5}-2 x^{2}+9\right) \mathrm{d} x$.
(ii) Hence find the area of the shaded region bounded by the curve and the tangent to the curve at P.

7 The quadratic equation

$$
(2 k-7) x^{2}-(k-2) x+(k-3)=0
$$

has real roots.
(a) Show that $7 k^{2}-48 k+80 \leqslant 0$.
(b) Find the possible values of k.

